Saturday, April 27, 2024
HomeCoronavirusHuman coronavirus OC43-elicited CD4+ T cells shield towards SARS-CoV-2 in HLA transgenic...

Human coronavirus OC43-elicited CD4+ T cells shield towards SARS-CoV-2 in HLA transgenic mice – Nature Communications

  • Noh, J. Y., Jeong, H. W. & Shin, E. C. SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Sign Transduct. Goal. Ther. 6, 203 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, N. et al. Covid-19 vaccine effectiveness towards the omicron (B.1.1.529) variant. New Engl. J. Med. 386, 1532–1546 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral however not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasreen, S. et al. Effectiveness of COVID-19 vaccines towards symptomatic SARS-CoV-2 an infection and extreme outcomes with variants of concern in Ontario. Nat. Microbiol. 7, 379–385 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wratil, P. R. et al. Three exposures to the spike protein of SARS-CoV-2 by both an infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 28, 496–503 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakurai, A. et al. Pure historical past of asymptomatic SARS-CoV-2 an infection. New Engl. J. Med. 383, 885–886 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Spudich, S. & Nath, A. Nervous system penalties of COVID-19. Science 375, 267–269 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Burdens of post-acute sequelae of COVID-19 by severity of acute an infection, demographics and well being standing. Nat. Commun. 12, 6571 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Lengthy-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, W. J. et al. Medical traits of coronavirus illness 2019 in China. New Engl. J. Med. 382, 1708–1720 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z., Xie, Y. & Bowe, B. Excessive-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muscogiuri, G. et al. Low-grade irritation, CoVID-19, and weight problems: medical facet and molecular insights in childhood and maturity. Int. J. Obes. 46, 1254–1261 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ng, W. H. et al. Comorbidities in SARS-CoV-2 sufferers: a scientific overview and meta-analysis. mBio 12, e03647–20 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Value-Haywood, E. G., Burton, J., Fort, D. & Seoane, L. Hospitalization and mortality amongst black sufferers and white sufferers with Covid-19. New Engl. J. Med. 382, 2534–2543 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Driscoll, M. et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Klang, E. et al. Extreme weight problems as an impartial threat issue for covid-19 mortality in hospitalized sufferers youthful than 50. Weight problems (Silver Spring) 28, 1595–1599 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J. M. et al. Gender variations in sufferers with COVID-19: deal with severity and mortality. Entrance. Public Well being 8, 152 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed people. Science 370, 89–94 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dykema, A. G. et al. Purposeful characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J. Clin. Make investments. 131, e146922 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woldemeskel, B. A. et al. CD4+ T cells from COVID-19 mRNA vaccine recipients acknowledge a conserved epitope current in numerous coronaviruses. J. Clin. Make investments. 132, e156083 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in circumstances of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, H. X. et al. Adaptive immunity to human coronaviruses is widespread however low in magnitude. Clin. Transl. Immunol. 10, e1264 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in people with COVID-19 illness and unexposed people. Cell 181, 1489–1501.e1415 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, L. et al. Detection of SARS-CoV-2-specific humoral and mobile immunity in COVID-19 convalescent people. Immunity 52, 971–977.e973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, Y. et al. Broad and robust reminiscence CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent people following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 sufferers with acute respiratory misery syndrome. Sci. Immunol. 5, eabd2071 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kundu, R. et al. Cross-reactive reminiscence T cells affiliate with safety towards SARS-CoV-2 an infection in COVID-19 contacts. Nat. Commun. 13, 80 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lineburg, Ok. E. et al. CD8(+) T cells particular for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 54, 1055–1065.e1055 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, J. et al. SARS-CoV-2-reactive T cells in wholesome donors and sufferers with COVID-19. Nature 587, 270–274 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Jimenez, A. F. et al. Cross-reactive mobile, however not humoral, immunity is detected between OC43 and SARS-CoV-2 NPs in folks not contaminated with SARS-CoV-2: Attainable position of cT(FH) cells. J. Leukoc. Biol. 112, 339–346 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westphal, T. et al. Proof for broad cross-reactivity of the SARS-CoV-2 NSP12-directed CD4(+) T-cell response with pre-primed responses directed towards widespread chilly coronaviruses. Entrance. Immunol. 14, 1182504 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diniz, M. O. et al. Airway-resident T cells from unexposed people cross-recognize SARS-CoV-2. Nat. Immunol. 23, 1324–1329 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesel-Lemoine, M. et al. A human coronavirus answerable for the widespread chilly massively kills dendritic cells however not monocytes. J. Virol. 86, 7577–7587 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorse, G. J., Patel, G. B., Vitale, J. N. & O’Connor, T. Z. Prevalence of antibodies to 4 human coronaviruses is decrease in nasal secretions than in serum. Clin. Vaccine Immunol. 17, 1875–1880 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, P., Somogyvari, F., Virok, D. P., Noseda, M. & McLean, G. R. Decoding Covid-19 with the SARS-CoV-2 Genome. Curr. Genet. Med. Rep. 9, 1–12 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loyal, L. et al. Cross-reactive CD4(+) T cells improve SARS-CoV-2 immune responses upon an infection and vaccination. Science 374, eabh1823 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateus, J. et al. Low-dose mRNA-1273 COVID-19 vaccine generates sturdy reminiscence enhanced by cross-reactive T cells. Science374, eabj9853 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacher, P. et al. Low-avidity CD4(+) T cell responses to SARS-CoV-2 in unexposed people and people with extreme COVID-19. Immunity 53, 1258–1271.e1255 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augusto, D. G. et al. A standard allele of HLA is related to asymptomatic SARS-CoV-2 an infection. Nature 620, 128–136 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouma, S. et al. Well being care employee seromonitoring reveals complicated relationships between widespread coronavirus antibodies and COVID-19 symptom period. JCI Perception 6, e150449 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallajosyula, V. et al. CD8(+) T cells particular for conserved coronavirus epitopes correlate with milder illness in COVID-19 sufferers. Sci. Immunol. 6, eabg5669 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonifacius, A. et al. COVID-19 immune signatures reveal secure antiviral T cell operate regardless of declining humoral responses. Immunity 54, 340–354.e346 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zellweger, R. M., Prestwood, T. R. & Shresta, S. Enhanced an infection of liver sinusoidal endothelial cells in a mouse mannequin of antibody-induced extreme dengue illness. Cell Host Microbe 7, 128–139 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zellweger, R. M. et al. CD8+ T cells can mediate short-term safety towards heterotypic dengue virus reinfection in mice. J. Virol. 89, 6494–6505 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balsitis, S. J. et al. Deadly antibody enhancement of dengue illness in mice is prevented by Fc modification. PLoS Pathog. 6, e1000790 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, J. et al. Dengue virus-reactive CD8(+) T cells mediate cross-protection towards subsequent Zika virus problem. Nat. Commun. 8, 1459 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, J. et al. CD4(+) T cells cross-reactive with dengue and zika viruses shield towards zika virus an infection. Cell Rep. 31, 107566 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regla-Nava, J. A. et al. Cross-reactive Dengue virus-specific CD8(+) T cells shield towards Zika virus throughout being pregnant. Nat. Commun. 9, 3042 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzelnick, L. C. et al. Zika virus an infection enhances future threat of extreme dengue illness. Science 369, 1123–1128 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzelnick, L. C. et al. Antibody-dependent enhancement of extreme dengue illness in people. Science358, 929–932 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salje, H. et al. Reconstruction of antibody dynamics and an infection histories to guage dengue threat. Nature 557, 719–723 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler, A. M. et al. Maternally acquired zika antibodies improve dengue illness severity in mice. Cell Host Microbe 24, 743–750.e745 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, A. et al. Prior dengue virus an infection and threat of Zika: a pediatric cohort in Nicaragua. PLoS Med. 16, e1002726 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Barraquer, I. et al. Impression of preexisting dengue immunity on Zika virus emergence in a dengue endemic area. Science 363, 607–610 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedroso, C. et al. Cross-protection of dengue virus an infection towards congenital zika syndrome, Northeastern Brazil. Emerg. Infect. Dis. 25, 1485–1493 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sridhar, S. et al. Impact of dengue serostatus on dengue vaccine security and efficacy. New Engl. J. Med. 379, 327–340 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sharp, T. M. et al. Information gaps within the epidemiology of extreme dengue impede vaccine analysis. Lancet Infect. Dis. 22, e42–e51 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Katzelnick, L. C., Bos, S. & Harris, E. Protecting and enhancing interactions amongst dengue viruses 1-4 and Zika virus. Curr. Opin. Virol. 43, 59–70 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valentine, Ok. M., Croft, M. & Shresta, S. Safety towards dengue virus requires a sustained stability of antibody and T cell responses. Curr. Opin. Virol. 43, 22–27 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngono, A. E. & Shresta, S. Immune response to dengue and zika. Annu. Rev. Immunol. 36, 279–308 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassert, M., Brien, J. D. & Pinto, A. Ok. Mouse fashions of heterologous flavivirus immunity: a job for cross-reactive T cells. Entrance. Immunol. 10, 1045 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Galarza, F. F. et al. Allele frequency web database (AFND) 2020 replace: gold-standard knowledge classification, open entry genotype knowledge and new question instruments. Nucleic Acids Res. 48, D783–D788 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Solberg, O. D. et al. Balancing choice and heterogeneity throughout the classical human leukocyte antigen loci: a meta-analytic overview of 497 inhabitants research. Hum. Immunol. 69, 443–464 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastard, P. et al. Autoantibodies neutralizing sort I IFNs are current in ~4% of uninfected people over 70 years outdated and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastard, P. et al. Autoantibodies towards sort I IFNs in sufferers with life-threatening COVID-19. Science 370, eabd4585 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koning, R., Bastard, P., Casanova, J. L., Brouwer, M. C. & van de Beek, D. with the Amsterdam UMCC-BI. Autoantibodies towards sort I interferons are related to multi-organ failure in COVID-19 sufferers. Intensive Care Med. 47, 704–706 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troya, J. et al. Neutralizing autoantibodies to sort I IFNs in >10% of sufferers with extreme COVID-19 pneumonia hospitalized in Madrid, Spain. J. Clin. Immunol. 41, 914–922 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez, S. E. et al. Neutralizing autoantibodies to sort I interferons in COVID-19 convalescent donor plasma. J. Clin. Immunol. 41, 1169–1171 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, E. Y. et al. Various purposeful autoantibodies in sufferers with COVID-19. Nature 595, 283–288 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Inborn errors of sort I IFN immunity in sufferers with life-threatening COVID-19. Science 370, eabd4570 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elong Ngono, A. et al. Protecting position of cross-reactive CD8 T cells towards dengue virus an infection. EBioMedicine 13, 284–293 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiskopf, D. et al. Immunodominance modifications as a operate of the infecting dengue virus serotype and first versus secondary an infection. J. Virol. 88, 11383–11394 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiskopf, D. et al. Insights into HLA-restricted T cell responses in a novel mouse mannequin of dengue virus an infection level towards new implications for vaccine design. J. Immunol. 187, 4268–4279 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, J. et al. Identification of Zika virus epitopes reveals immunodominant and protecting roles for dengue virus cross-reactive CD8(+) T cells. Nat. Microbiol. 2, 17036 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vita, R. et al. The Immune Epitope Database (IEDB): 2018 replace. Nucleic Acids Res. 47, D339–D343 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung damage and mortality in normal laboratory mice. Cell 183, 1070–1085.e1012 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 an infection and transmission. Nature 602, 294–299 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, T. et al. An infection of wild-type mice by SARS-CoV-2 B.1.351 variant signifies a attainable novel cross-species transmission route. Sign Transduct. Goal Ther. 6, 420 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferretti, A. P. et al. Unbiased screens present CD8(+) T cells of COVID-19 sufferers acknowledge shared epitopes in SARS-CoV-2 that largely reside outdoors the spike protein. Immunity 53, 1095–1107.e1093 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. H. O. et al. CD8(+) T cells particular for an immunodominant SARS-CoV-2 nucleocapsid epitope show excessive naive precursor frequency and TCR promiscuity. Immunity 54, 1066–1082.e1065 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulien, I. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8(+) T cells. Nat. Med. 27, 78–85 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sekine, T. et al. Sturdy T cell immunity in convalescent people with asymptomatic or gentle COVID-19. Cell 183, 158–168.e114 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Painter, M. M. et al. Speedy induction of antigen-specific CD4(+) T cells is related to coordinated humoral and mobile immunity to SARS-CoV-2 mRNA vaccination. Immunity 54, 2133–2142.e2133 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dan, J. M. et al. Immunological reminiscence to SARS-CoV-2 assessed for as much as 8 months after an infection. Science 371, eabf4063 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hicks, J. et al. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal betacoronaviruses. J. Clin. Immunol. 41, 906–913 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saletti, G. et al. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci. Rep. 10, 21447 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickbakhsh, S. et al. Epidemiology of seasonal coronaviruses: establishing the context for the emergence of coronavirus illness 2019. J. Infect. Dis. 222, 17–25 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Killerby, M. E. et al. Human coronavirus circulation in the US 2014-2017. J. Clin. Virol. 101, 52–56 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snyder, T. M. et al. Magnitude and dynamics of the T-cell response to SARS-CoV-2 an infection at each particular person and inhabitants ranges. medRxiv https://doi.org/10.1101/2020.07.31.20165647 (2020).

  • Tarke, A. et al. Complete evaluation of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 circumstances. Cell Rep. Med. 2, 100204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saini, S. Ok. et al. SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8(+) T cell activation in COVID-19 sufferers. Sci. Immunol. 6, eabf7550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quadeer, A. A., Ahmed, S. F. & McKay, M. R. Panorama of epitopes focused by T cells in 852 people recovered from COVID-19: Meta-analysis, immunoprevalence, and internet platform. Cell reviews. Drugs 2, 100312 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelde, A. et al. SARS-CoV-2-derived peptides outline heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Grifoni, A. et al. A sequence homology and bioinformatic strategy can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 27, 671–680.e672 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kared, H. et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 people. J. Clin. Make investments. 131, e145476 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, O. W. et al. Reminiscence T cell responses focusing on the SARS coronavirus persist as much as 11 years post-infection. Vaccine 34, 2008–2014 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, S. et al. Genome-wide B cell, CD4(+), and CD8(+) T cell epitopes which can be extremely conserved between human and animal coronaviruses, recognized from SARS-CoV-2 as targets for preemptive pan-coronavirus vaccines. J. Immunol. 206, 2566–2582 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, Y et al. Ancestral origins are related to SARS-CoV-2 susceptibility and safety in a Florida affected person inhabitants. bioRxiv https://doi.org/10.1101/2022.03.30.486345 (2022).

  • Keller, M. D. et al. SARS-CoV-2-specific T cells are quickly expanded for therapeutic use and goal conserved areas of the membrane protein. Blood 136, 2905–2917 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, A. T. et al. Early induction of purposeful SARS-CoV-2-specific T cells associates with speedy viral clearance and gentle illness in COVID-19 sufferers. Cell Rep. 34, 108728 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crotty, S. T follicular helper cell differentiation, operate, and roles in illness. Immunity 41, 529–542 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueno, H., Banchereau, J. & Vinuesa, C. G. Pathophysiology of T follicular helper cells in people and mice. Nat Immunol. 16, 142–152 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heide, J. et al. Broadly directed SARS-CoV-2-specific CD4+ T cell response contains regularly detected peptide specificities throughout the membrane and nucleoprotein in sufferers with acute and resolved COVID-19. PLoS Pathog. 17, e1009842 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karsten, H. et al. Excessive-resolution evaluation of particular person spike peptide-specific CD4(+) T-cell responses in vaccine recipients and COVID-19 sufferers. Clin. Transl. Immunol. 11, e1410 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Corey, L. et al. SARS-CoV-2 variants in sufferers with immunosuppression. New Engl. J. Med. 385, 562–566 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Redd, A. D. et al. CD8+ T-cell responses in COVID-19 convalescent people goal conserved epitopes from a number of outstanding SARS-CoV-2 circulating variants. Open Discussion board Infect. Dis. 8, ofab143 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naranbhai, V. et al. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most however not all people. Cell 185, 1041–1051.e1046 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GeurtsvanKessel, C. H. et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7, eabo2202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, J. et al. Technology of a broadly helpful mannequin for COVID-19 pathogenesis, vaccination, and therapy. Cell 182, 734–743.e735 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahan, Ok. et al. Correlates of safety towards SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soresina, A. et al. Two X-linked agammaglobulinemia sufferers develop pneumonia as COVID-19 manifestation however get better. Pediatr. Allergy Immunol. 31, 565–569 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bange, E. M. et al. CD8(+) T cells contribute to survival in sufferers with COVID-19 and hematologic most cancers. Nat. Med. 27, 1280–1289 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, Z. et al. Mapping and position of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 218, e20202187 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Israelow, B. et al. Adaptive immune determinants of viral clearance and safety in mouse fashions of SARS-CoV-2. Sci. Immunol. 6, eabl4509 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and illness severity. Cell 183, 996–1012.e1019 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nesterenko, P. A. et al. HLA-A(*)02:01 restricted T cell receptors towards the extremely conserved SARS-CoV-2 polymerase cross-react with human coronaviruses. Cell Rep. 37, 110167 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Bert, N. et al. Extremely purposeful virus-specific mobile immune response in asymptomatic SARS-CoV-2 an infection. J. Exp. Med. 218, e20202617 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, C. C. S. et al. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 can not solely be defined by prior publicity to endemic human coronaviruses. Infect. Genet. Evol. 95, 105075 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggenhuizen, P. J. et al. Heterologous immunity between SARS-CoV-2 and pathogenic micro organism. Entrance. Immunol. 13, 821595 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Low, J. S. et al. Clonal evaluation of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science 372, 1336–1341 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagar, M. et al. Current endemic coronavirus an infection is related to less-severe COVID-19. J. Clin. Make investments. 131, e143380 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humbert, M. et al. Purposeful SARS-CoV-2 cross-reactive CD4(+) T cells established in early childhood decline with age. Proc. Natl Acad. Sci. USA 120, e2220320120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. et al. Airway reminiscence CD4(+) T cells mediate protecting immunity towards rising respiratory coronaviruses. Immunity 44, 1379–1391 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poston, D. et al. Absence of extreme acute respiratory syndrome coronavirus 2 neutralizing exercise in prepandemic sera from people with latest seasonal coronavirus an infection. Clin. Infect. Dis. 73, e1208–e1211 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ercanoglu, M. S. et al. No substantial preexisting B cell immunity towards SARS-CoV-2 in wholesome adults. iScience 25, 103951 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373, 1109–1116 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, X. et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity together with SARS-CoV-2. Nat. Microbiol. 7, 1063–1074 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dacon, C. et al. Broadly neutralizing antibodies goal the coronavirus fusion peptide. Science 377, 728–735 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Low, J. S. et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 377, 735–742 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, E. M. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 an infection however not related to safety. Cell 184, 1858–1864.e1810 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, Ok. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in people. Science 370, 1339–1343 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poston, D et al. Absence of SARS-CoV-2 neutralizing exercise in pre-pandemic sera from people with latest seasonal coronavirus an infection. medRxiv https://doi.org/10.1101/2020.10.08.20209650 (2020).

  • Premkumar, L. et al. The receptor binding area of the viral spike protein is an immunodominant and extremely particular goal of antibodies in SARS-CoV-2 sufferers. Sci. Immunol. 5, eabc8413 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grifoni, A. et al. Prior dengue virus publicity shapes T cell immunity to Zika Virus in people. J. Virol. 91, e01469–17 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wragg, Ok. M. et al. Institution and recall of SARS-CoV-2 spike epitope-specific CD4(+) T cell reminiscence. Nat. Immunol. 23, 768–780 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francis, J. M. et al. Allelic variation in school I HLA determines CD8(+) T cell repertoire form and cross-reactive reminiscence responses to SARS-CoV-2. Sci. Immunol. 7, eabk3070 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Heitmann, J. S. et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601, 617–622 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bastard, P. Why do folks die from COVID-19? Science 375, 829–830 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Minervina, A. A. et al. SARS-CoV-2 antigen publicity historical past shapes phenotypes and specificity of reminiscence CD8 T cells. medRxiv https://doi.org/10.1101/2021.07.12.21260227 (2022).

  • Choi, H. et al. Protecting immunity by an engineered DNA vaccine for Mayaro virus. PLoS Negl. Trop. Dis. 13, e0007042 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijgen, L. et al. Growth of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43, 5452–5456 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendoza, E. J., Manguiat, Ok., Wooden, H. & Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr. Protoc. Microbiol. 57, ecpmc105 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexandersen, S., Chamings, A. & Bhatta, T. R. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples should not an indicator of lively replication. Nat. Commun. 11, 6059 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elong Ngono, A. et al. Mapping and position of the CD8(+) T cell response throughout main Zika virus an infection in mice. Cell Host Microbe 21, 35–46 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gruber, A. D. et al. Standardization of reporting standards for lung pathology in SARS-CoV-2-infected hamsters: what issues? Am. J. Respir. Cell Mol. Biol. 63, 856–859 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves, R. SOURCE_DATA_NCOMMS-23-38557B_part9 [Data set]. Zenodo https://doi.org/10.5281/zenodo.10397796, (2023).

  • Supply hyperlink

    - Advertisment -